45,450 research outputs found

    The phase transition in the anisotropic Heisenberg model with long range dipolar interactions

    Get PDF
    In this work we have used extensive Monte Carlo calculations to study the planar to paramagnetic phase transition in the two-dimensional anisotropic Heisenberg model with dipolar interactions (AHd) considering the true long-range character of the dipolar interactions by means of the Ewald summation. Our results are consistent with an order-disorder phase transition with unusual critical exponents in agreement with our previous results for the Planar Rotator model with dipolar interactions. Nevertheless, our results disagrees with the Renormalization Group results of Maier and Schwabl [PRB, 70, 134430 (2004)] and the results of Rapini et. al. [PRB, 75, 014425 (2007)], where the AHd was studied using a cut-off in the evaluation of the dipolar interactions. We argue that besides the long-range character of dipolar interactions their anisotropic character may have a deeper effect in the system than previously believed. Besides, our results shows that the use of a cut-off radius in the evaluation of dipolar interactions must be avoided when analyzing the critical behavior of magnetic systems, since it may lead to erroneous results.Comment: Accepted for publication in the Journal of Magnetism and Magnetic Materials. arXiv admin note: substantial text overlap with arXiv:1109.184

    Predicting Intermediate Storage Performance for Workflow Applications

    Full text link
    Configuring a storage system to better serve an application is a challenging task complicated by a multidimensional, discrete configuration space and the high cost of space exploration (e.g., by running the application with different storage configurations). To enable selecting the best configuration in a reasonable time, we design an end-to-end performance prediction mechanism that estimates the turn-around time of an application using storage system under a given configuration. This approach focuses on a generic object-based storage system design, supports exploring the impact of optimizations targeting workflow applications (e.g., various data placement schemes) in addition to other, more traditional, configuration knobs (e.g., stripe size or replication level), and models the system operation at data-chunk and control message level. This paper presents our experience to date with designing and using this prediction mechanism. We evaluate this mechanism using micro- as well as synthetic benchmarks mimicking real workflow applications, and a real application.. A preliminary evaluation shows that we are on a good track to meet our objectives: it can scale to model a workflow application run on an entire cluster while offering an over 200x speedup factor (normalized by resource) compared to running the actual application, and can achieve, in the limited number of scenarios we study, a prediction accuracy that enables identifying the best storage system configuration

    Theory of Local Dynamical Magnetic Susceptibilities from the Korringa-Kohn-Rostoker Green Function Method

    Get PDF
    Within the framework of time-dependent density functional theory combined with the Korringa-Kohn-Rostoker Green function formalism, we present a real space methodology to investigate dynamical magnetic excitations from first-principles. We set forth a scheme which enables one to deduce the correct effective Coulomb potential needed to preserve the spin-invariance signature in the dynamical susceptibilities, i.e. the Goldstone mode. We use our approach to explore the spin dynamics of 3d adatoms and different dimers deposited on a Cu(001) with emphasis on their decay to particle-hole pairs.Comment: 32 pages (preprint), 6 figures, one tabl

    Spin Orbit Coupling and Spin Waves in Ultrathin Ferromagnets: The Spin Wave Rashba Effect

    Full text link
    We present theoretical studies of the influence of spin orbit coupling on the spin wave excitations of the Fe monolayer and bilayer on the W(110) surface. The Dzyaloshinskii-Moriya interaction is active in such films, by virtue of the absence of reflection symmetry in the plane of the film. When the magnetization is in plane, this leads to a linear term in the spin wave dispersion relation for propagation across the magnetization. The dispersion relation thus assumes a form similar to that of an energy band of an electron trapped on a semiconductor surfaces with Rashba coupling active. We also show SPEELS response functions that illustrate the role of spin orbit coupling in such measurements. In addition to the modifications of the dispersion relations for spin waves, the presence of spin orbit coupling in the W substrate leads to a substantial increase in the linewidth of the spin wave modes. The formalism we have developed applies to a wide range of systems, and the particular system explored in the numerical calculations provides us with an illustration of phenomena which will be present in other ultrathin ferromagnet/substrate combinations

    Using zeros of the canonical partition function map to detect signatures of a Berezinskii-Kosterlitz-Thouless transition

    Full text link
    Using the two dimensional XY−(S(O(3))XY-(S(O(3)) model as a test case, we show that analysis of the Fisher zeros of the canonical partition function can provide signatures of a transition in the Berezinskii-Kosterlitz-Thouless (BKTBKT) universality class. Studying the internal border of zeros in the complex temperature plane, we found a scenario in complete agreement with theoretical expectations which allow one to uniquely classify a phase transition as in the BKTBKT class of universality. We obtain TBKTT_{BKT} in excellent accordance with previous results. A careful analysis of the behavior of the zeros for both regions Re(T)≤TBKT\mathfrak{Re}(T) \leq T_{BKT} and Re(T)>TBKT\mathfrak{Re}(T) > T_{BKT} in the thermodynamic limit show that Im(T)\mathfrak{Im}(T) goes to zero in the former case and is finite in the last one
    • …
    corecore